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Clamp band joints are commonly used for connecting circular components together in

industry. Some of the systems jointed by clamp band are subjected to dynamic load.

However, very little research on the dynamic characteristics for this kind of joint can be

found in the literature. In this paper, a dynamic model for clamp band joint system is

this model. Nonlinear finite element analysis is conducted to identify the model

parameters. Then static experiments are carried out on a scaled model of the clamp

band joint to validate the joint model. Finally, the model is adopted to study the

dynamic characteristics of the clamp band joint system subjected to axial harmonic

excitation and the effects of the wedge angle of the clamp band joint and the preload on

the response. The model proposed in this paper can represent the nonlinearity of the

clamp band joint and be used conveniently to investigate the effects of the structural

and loading parameters on the dynamic characteristics of this type of joint system.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Clamp band joints are widely used for connecting components such as flanges, pipes and other shell segments. They can
offer the joint systems with the properties of simple configuration and reliable operation. Another important application of
clamp band is as a mechanical spacecraft attachment to launch vehicles in the aerospace industry. For different working
conditions the configuration of clamp band joint varies slightly, while the working principle remains the same.
Circumferential preload is applied on the clamp band during assembling to insure reliable connection. However, there
exists slippage between the joint surfaces inevitably that leads to nonlinear stiffness and damping. In the exacting
environment of spacecraft launching, these local nonlinearities would result in unpredictable behavior of the launch system
during the launch and ascent period and even affect the success of launch event [1,2]. It is, therefore, vital to construct the
dynamic model for clamp band joint and investigate the nonlinear dynamic characteristics of the joint system.

Much research on the modeling and dynamic analysis of the joint configuration had been carried out [3–6], most of
which focused on the bolted joint and the discussions about clamp band joint were few. Robert and Michael [7] performed
two full-scale structural tests and discussed the axial capability of the marman clamp using a nonlinear, axisymmetric
finite element model. The analysis results showed that the gap capability of the marman clamp could be used to define the
allowable clamp design load, which was increased by 50% compared with the allowable design load generated using
conservative methods. Shoghi et al. [8,9] calculated the stress distribution and displacements of the V-section band clamp
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and the flat section band clamp. The results were validated by strain and displacement measurements. Qin et al. [10]
constructed theoretical models for the clamp band joint to calculate the axial stiffness and discussed the effects of the
magnitude of the preload on the system stiffness and load capability. It was indicated that the increment of the preload
could improve the load capability of the clamp band joint but had a little effect on the joint stiffness. Although the works of
these literatures are useful for the design and the assembling of the clamp band joint, all of them are limited to static
analysis and the dynamic model of the clamp band joint is still not available.

In this paper, a dynamic model was developed to characterize the forced response of the clamp band joint system
subjected to axial excitation. First, the axial motion equation for the flange of the interface ring jointed by clamp band was
derived based on the analysis of the interaction and deformation of the clamp band components. Then the dynamic model
for the clamp band joint system was developed, where contact and frictional slippage between V-segments and interface
rings were considered. Nonlinear finite element analysis was carried out to identify contact parameters of the dynamic
model. The joint model was verified by static experiments undertaken on a 1:2.5 scale clamp band joint model. Finally, the
dynamic characteristics of the clamp band joint system under axial excitation were studied and the payload response was
compared with that of the configuration having no relative displacement between the joint surfaces to investigate the
nonlinearity presented by the clamp band joint. The effects of the wedge angle of the clamp band joint and the preload on
the system responses were also discussed based on the proposed model.

2. Derivation of dynamic model for clamp band joint system

2.1. Assumptions

The configuration of the clamp band joint for fastening spacecraft to launch vehicle is shown in Fig. 1, in which the
separation springs and the lateral springs are not illustrated since they have little effect on the joining behavior of the
clamp band joint. The joint system consists of two half metal belts that are fastened together by bolts, V-segments
and upper and lower interface rings. By tightening of the two bolts, the tension in the metal belts increases, which leads to
the application of a circumferential force to the V-segments encircled by metal belts. Then the wedging action of the
V-segments onto the flanges of the interface rings generates an axial load that can join the interface rings together and
allow them to sustain applied tensile forces and bending moments.

Considering the configuration and assembly of the clamp band joint [10,11] assumptions are made in the derivation of
the dynamic equations for clamp band joint system under preload and axial excitation as follows.
(1)
 All components of the clamp band joint system respond in a linear elastic manner.

(2)
 The magnitude of tension in the metal belts remains constant in a motion cycle, which is equal to the preload applied

during assembling.

(3)
 Friction between the metal belts and the V-segments is ignored so that the tension in the belts and the contact force

between the metal belts and the V-segments are uniformly distributed along the circumference.

(4)
 The distribution of V-segments is continuous along the circumference. Together with assumption (3), it can be derived

that the joint system is under axisymmetric load condition and the deformations of interface rings in all radial sections
are uniform. Hence, it is sufficient to consider deformations only in one radial section through the axis of symmetry.
(5)
 The deformations of upper and lower interface rings are symmetrical about the joint surface so that the tangential
contact force on the joint surface is ignored.
2.2. Axial motion equation for flange of interface ring

The free-body diagram for a radial section of the upper interface ring and the upper portion of one V-segment is shown
in Fig. 2, where the interface ring is sectioned into a cylindrical shell and a flange, and pt, qt and mt are the internal forces
and moment on the section. It should be noted that the forces and moment acting on the radial section of the interface ring
upper interface ring
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metal  belt
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R

lower interface ring

Fig. 1. Sketch of clamp band join.
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and the V-segment are distributed along their acting line. The forces and moment shown in Fig. 2 are resultants per unit
length of the acting circumference. In addition, the distribution of those contact forces fn, ff and fc varies along with the
magnitude of the applied load and the deformation, which will be discussed in Section 3.

Considering that the cross-sectional dimensions of the flange are much small in comparison with the average radius,
the bending deformation of the flange is neglected and the flange motion is then reduced to two degrees of freedom
including torsion about point C on the outer edge and compression in radial direction. Only the torsional motion is
considered here as illustrated in Fig. 3, where Z and r indicate the axial and radial directions, respectively, c denotes the
flange rotation angle about the point C, DR=R1�R0 is the radial distance from the middle surface of cylindrical shell to the
rotational center C. Taking c as displacement coordinate, the torsional motion equation for the flange under the axial
excitation can be obtained by using the Lagrange’s equation

rIp
€cþ

EIr

R
2
c¼

M

2pR
(1)

where r is the density of the ring material, Ir= Ir1+ Ir2, Ir1 ¼
R R2

R3

R t0=2
�t0=2 z2 dzdr, Ir2 ¼

R R1

R2

R tr=2
�tr=2 z2 dzdr are the mass moments of

inertia of rectangular and trapezoid portions of the flange radial section, respectively, Ip= Ip1+ Ip2,

Ip1 ¼
R R2

R3

R t0=2
�t0=2 ðR1�rÞ2þz2

h i
dzdr, Ip2 ¼

R R1

R2

R tr=2
�tr=2½ðR1�rÞ2þz2�dzdr are the polar moments of inertia of rectangular and

trapezoid portions of the flange radial section about the rotational center C, respectively, R¼ R1þR2=2 is the average radius
of the flange, M is the resultant moment of those forces and moment acting on the flange about the rotational center C,
which is given by

M¼ 2pR ptðR1�R0Þþ fcrc�fvðR1�Rf Þ�fh

tf

2
�qt

t0

2
�mt

� �
(2)

where pt is the axial excitation applied to the interface ring per unit length of the circumference of cylindrical shell, fv and
fh are axial and radial components of the contact force between the flange and the V-segment, respectively, fc is the normal
contact force between upper and lower rings, qt and mt are the internal shear force and bending moment on the section of
the cylindrical shell and the flange, respectively, t0 and tf=t0�2(Rf�R2)tan(a/2) are the flange thickness in the axial
direction at the points where qt and fh are applied, respectively, Rf is the radius at the acting point of fv and fh, rc is the radial
distance from the acting point of fc to the outer edge of the flange.
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Expressions for mt and qt can be obtained by using the condition of deformation continuity at the shell-flange junction
[12] as below

mt ¼
Ets

2b3R0
2
ðc�buÞþ

n
2b2R0

pt

qt ¼
Ets

2b2R0
2
ðc�2buÞþ

n
bR0

pt

(3)

where b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1�n2Þ=ðR0tsÞ

24

q
is the attenuation coefficient, in which n is the Poisson’s ratio of the interface ring material,

and ts the thickness of the cylindrical shell, u is the radial compression of the flange, which is induced by the tension in the
metal belt and the radial constraint of the cylindrical shell and can be expressed as

u¼
ðpsþ2qtÞR

2

2EA
(4)

where ps is the contact force between the metal belt and the V-segment induced by the preload per unit length of the
circumference of metal belts, E is the elastic modulus of the interface ring material and A is the area of the interface ring
cross section.

Considering the action of the external forces and the equilibrium equations of the components shown in Fig. 2,
the following relations can be obtained:

pt ¼ T=2pR0

ps ¼ S=Rb

fv ¼ fn cosaþ ff sina
fh ¼ fn sina�ff cosa¼ ps=2

fc ¼ fv�pt

(5)

where T is the applied axial load, S is the tension in the metal belts, fn and ff are the contact forces between the upper ring
and the V-segment in normal and tangential directions, respectively, R0 and Rb are the radii of the middle surfaces of the
cylindrical shell and the metal belts respectively. Substituting Eqs. (3)–(5) into Eq. (2) yields

M¼ 2pR ðR1�R0�rcÞ�
nR0Aðbt0þ1Þ

2b2R0
2Aþ2bR

2
ts

" #
pt�ðR1�Rf�rcÞfvþ

R
2
tsðbt0þ1Þ

2b2R0
2Aþ2bR

2
ts

�
tf

2

" #
ps

2
�

EAtsð2þbt0þðR
2
ts=bR0

2AÞÞ

4b3R0
2Aþ4b2R

2
ts

c

( )

(6)

Then substituting the expression of M from Eq. (6) into Eq. (1), the dynamic equation for the torsional vibration of the
flange is obtained

rIp
€cþ

EIr

R
2
þ

EAtsð2þbt0þðR
2
ts=bR0

2AÞÞ

4b3R0
2Aþ4b2R

2
ts

" #
c¼ ðR1�R0�rcÞ�

nR0Aðbt0þ1Þ

2b2R0
2Aþ2bR

2
ts

" #
pt

�ðR1�Rf�rcÞðfn cosaþ ff sinaÞþ R
2
tsðbt0þ1Þ

2b2R0
2Aþ2bR

2
ts

�
tf

2

" #
ps

2

(7)

Corresponding to the flange rotation angle c the axial displacement of the points on the middle surface of cylindrical
shell is zr=cDR. By differentiating the expression of zr with respect to time twice, the acceleration of the axial motion is
given as €zr ¼

€cDR. Substituting expressions of zr and €zr into Eq. (7) and introducing notations as follows for convenience of
description:

mr ¼
rIp

DR
, kr ¼

EIr

R
2
DR
þ

EAtsð2þbt0þðR
2
ts=bR0

2AÞÞ

4b3R0
2DRAþ4b2R

2
DRts

, r0 ¼ R1�R0�
nR0Aðbt0þ1Þ

2b2R0
2Aþ2bR

2
ts

, tr ¼
R

2
tsðbt0þ1Þ

2b2R0
2Aþ2bR

2
ts

:

The motion equation for axial vibration of the flange is

mr €zrþkrzr ¼ ðr0�rcÞpt�ðR1�Rf�rcÞfvþ tr�
tf

2

� �
ps

2
(8)

2.3. Dynamic model for clamp band joint system

The clamp band joint system subjected to the axial vibration is shown in Fig. 4, where the axial displacement excitation
zH is acted on the bottom of lower interface ring and vibration is transmitted to the payload M through the clamp band
joint. The payload mentioned here can be recognized as the spacecraft mounted on the launch vehicle. The model for
calculating the payload response is shown in Fig. 5, where the mass of cylindrical shell is ignored since it is much small
compared with the payload mass. m¼M=2pR denotes the mass of payload in per unit length of circumference of the
cylindrical shell at middle surface, where M is the payload mass, ks ¼ ks=2pR denotes the axial stiffness of the cylindrical
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shell in per unit length of circumference of middle surface, where ks=EAs/ls is the axial stiffness of cylindrical shell, As and ls
are the cross-section area and the length of the cylindrical shell, respectively.

The axial motion equation for the payload vibration can be easily obtained as

m€zþksðz�z2Þ ¼ 0 (9)

where z is the axial displacement of the payload, z2 is the axial displacement at the junction of the upper cylindrical shell
and the flange. By defining that the positive direction of loads and displacements of the upper and lower flanges is
symmetrical about the joint surface, z2 can be expressed as

z2 ¼ z1þðc1þc2ÞDR¼ z1þzr1þzr2 (10)

where z1 is the axial displacement at the junction between the lower cylindrical shell and the flange, c1 and c2 are the
torsion angles of the lower and upper flanges, respectively, zr1=c1DR and zr2=c2DR are the relative axial displacements of
the lower and upper flanges at the middle surface of the cylindrical shell about the joint surface, respectively. The axial
motion equations for the lower and upper flanges are

mr €zr1þkrzr1 ¼ ðr0�rcÞpt1�ðR1�Rf�rcÞfv1þ tr�
tf

2

� �
ps1

mr €zr2þkrzr2 ¼ ðr0�rcÞpt2�ðR1�Rf�rcÞfv2þ tr�
tf

2

� �
ps2

(11)

By analyzing the interactions of components of clamp band joint, the following relations can be obtained:

pt1 ¼ ksðz1�zHÞ, pt2 ¼ ksðz�z2Þ

pt1�fv1 ¼ pt2�fv2

ps ¼ ps1þps2

(12)

According to assumption (5) proposed in Section 2.1, the upper and lower flanges vibrate symmetrically about the joint
surface, then it can be obtained that zr1=zr2=zr, fv1= fv2= fv. By combining the motion equations for the lower and upper
flanges together in Eq. (11) and then substituting Eqs. (10) and (12) into Eqs. (9) and (11), with simplification the dynamic
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equations for the axial vibration of clamp band joint system are given by

m€zþ
ks

2
z�kszr ¼

ks

2
zH

mr €zr�
ksðr0�rcÞ

2
zþðkrþksr0Þzr ¼�

ksðr0�rcÞ

2
zH�ðR1�Rf�rcÞfvþ tr�

tf

2

� �
ps

2

(13)

Here the axial vibration of clamp band joint system is considered as two degrees of freedom. In fact, the mass of the flange
is also negligible compared with that of the payload. However, the inertial force item of the flange in Eq. (13) is vital for
analyzing the dynamic characteristics at the joint surface and should not be ignored in the system motion equations.

It should be noted that the contact state between the interacting components varies as clamp band joint system
vibrates. Consequently, model parameters fn, ff, Rf and rc in the dynamic equations are not constants. Furthermore, the axial
stiffness between the upper and lower interface rings will increase dramatically and restrict further axial compression as
full contact is established between the interface rings during vibration. This unilateral constraint of axial deformation is
not yet considered in Eqs. (8) and (13).

3. Identification of parameters in clamp band joint system model

3.1. Nonlinear finite element model for clamp band joint

In order to determine those unknown parameters in the dynamic model, a nonlinear finite element model of a cyclic
section having one V-segment for the clamp band joint is developed using the ANSYS software as shown in Fig. 6, where
face-to-face contact elements are applied between each contact pair. This model is nonlinear since the contact between
joint components is considered. The baseline parameter values of the finite element model refer to a certain type of
clamped joint interface of the LM-3A launch vehicle and are listed in Table 1, where m is the friction coefficient between the
interface ring and the V-segment. Unless otherwise stated, parameters may be assumed to have their baseline values.

Simulations are carried out statically on the model by applying loads in multiple steps: in the first load step the preload
in the metal belts is generated by assigning the coefficient of thermal expansion to the metal belts and then applying
virtual temperature variation, then an axial load cycle is applied on the interface rings by loading and unloading axial
tension and then loading and unloading reversely axial pressure in sequence in the following next four load steps. And the
cycle of axial loading is repeated until the stable state is achieved for the system.

3.2. Analysis of contact force distribution

As defined in Section 2.2, Rf and rc are used to represent the distribution of the contact forces ff and fc, respectively,
which are related to the structural parameters and the deformation of the interface rings. For a certain type of clamp band
joint the structural parameters are definite. In this case, the deformation of the interface rings is determined by the
magnitude of the preload and the axial load. Hence, only the effect of the preload and the axial load on the values of Rf and
rc is concerned here.
Fig. 6. Nonlinear finite element model for a cyclic section of the clamp band joint. (a) Finite element model for the clamp band joint and (b) cross section

of the finite element model.
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Table 1
Baseline parameter values for the clamp band joint model.

Symbol Baseline value Units

M 2300 kg

r 2700 kg/m3

a 15 degree

R1 0.6075 m

R0 0.594 m

Rf0 0.6026 m

Rb 0.623 m

ls 0.4 m

ts 0.008 m

E 71.7 MPa

n 0.33

m 0.125
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R
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Fig. 7. Simulation results for different preloads and axial forces. (a) Variation of Rf with respect to zr and (b) variation of rc with respect to zr.
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Fig. 7 shows the variation of Rf and rc in terms of axial displacement zr for different combinations of preload and axial
tension. The notation Rf0 in Fig. 7(a) represents the radius at the point of the flange corresponding to the wedge head of the
V-segment, which is illustrated in Fig. 2. Comparison of Fig. 7(a) and (b) indicates that the variation trends of Rf and rc along
with zr are nearly the same. When zr is relatively large, Rf is approximated to Rf0. At the same time, rc is approximated to
zero. It means that the contact forces ff and fc are focused at the points corresponding to the wedge head of V-segment and
the outer edge of the flanges respectively. As zr approaches to zero, the values of Rf and rc increase rapidly to certain values.
The increment of the values of Rf and rc indicates that the acting points of the contact force resultants move away from the
points where Rf=Rf0 and rc=0, respectively, when the relative axial displacement between the upper and lower flanges
approaches to zero. At this moment the contact force fc also suffers an obvious increment. This phenomenon is caused by
the full contact of the upper and lower interface rings, which results in an axial constraint. The axial constraint can be
represented by introducing an additional stiffness kp in the motion equation for the axial vibration of the flange.

By considering the equation for the deformation of elastic compression and integrating the contact forces on the joint
surface of the flanges, the contact stiffness kp for the full contact between the upper and lower interface rings can be
obtained

kp ¼
EðR1�R3Þ

3
ðR1þ3R3Þ

6t0RDR
(14)

Then the axial motion of the flange is divided into two states: when zr40, the axial vibration of the flange is described by
Eq. (8) deduced in Section 2.2; when zrr0, the contact stiffness kp between the upper and lower interface rings is added to
kr in the axial motion equation. Therefore, kp can be expressed as

kp ¼

0, zr 40

EðR1�R3Þ
3
ðR1þ3R3Þ

6t0RDR
, zr r0

8><
>: (15)

The value of this additional stiffness is much larger than that of the original stiffness kr.
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Since the abrupt increment of rc is represented by adding kp into the motion equation as zr approaches to zero and the
change of rc can be neglected when zr is relatively large, rc=0 is adopted in the dynamic equations for the flange. As it can
be seen in the following section that the magnitude of ff becomes quite small as zr approaches to zero, where the increment
of Rf has little effect on the response of the joint system. Hence the variation of Rf is also neglected when zr is small and it is
assumed that Rf=Rf0 in the dynamic equations.
3.3. Analysis of friction between flange and V-segment

Fig. 8 shows the variation of the axial displacement and the contact force between the flange and the V-segment during
the cycle of axial loading for a preload S=25 kN and an axial load T=700 kN. It can be seen in Fig. 8 that the variation trends
of the normal and tangential components of the contact force coincide. Around the points where the axial load reaches at
the maximum tension and reverses its direction from tension to pressure the components of contact force change little
with the variation of axial load, which indicates the occurrence of macro slip between the interface ring and the
V-segment. When the axial load is in its pressure state, a full contact of the upper and lower interface rings takes place.
At this moment the axial displacement remain constant and little relative motion between the interface ring and the
V-segment occurs. Consequently, the tangential component of the contact force, that is, the friction force, approaches to
zero as shown in Fig. 8.

Coulomb friction model is adopted to describe the friction force between the interface ring and the V-segment in terms
of the axial displacement. Taking the full contact state into consideration, the friction force can be expressed by

ff ¼
sgnð_zrÞmfn, zr 40

0, zr r0

(
(16)

Combining the equilibrium equation of the V-segment in radial direction and the expression of the axial component of
the contact force between the interface ring and the V-segment

2ðfn sina�ff cosaÞ ¼ ps

fv ¼ fn cosaþ ff sina (17)
13 14 15 16 17 18 19 20 21

-500

0

500

A
xi

al
 fo

rc
e 

(k
N

)

13 14 15 16 17 18 19 20 21

0

0.2

0.4

A
xi

al
 d

is
p.

(m
m

)

13 14 15 16 17 18 19 20 21
0

100

200

300

N
or

m
al

 fo
rc

e(
kN

)

13 14 15 16 17 18 19 20 21
-20

0
20
40
60

Load step

Ta
ng

en
tia

l
fo

rc
e 

(k
N

)

Fig. 8. Simulation results of the axial loading cycle for S=25 kN and T=500 kN.
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and substituting ff from Eq. (16) into Eq. (17), the axial component of contact force is given by

fv ¼

cosaþ sgnð_zrÞmsina
2½sina�sgnð_zrÞmcosa�

ps, zr 40

ps

2
cota, zr r0

8>><
>>: (18)

To avoid numerical integration problems, the discontinuous friction force is smoothened using arc-tangent type
function in the following simulations [13].

3.4. Dynamic model for clamp band joint system considering contact and frictional slippage

Based on the above analysis, the axial motion equation for the flange of the interface ring becomes

mr €zrþðkrþkpÞzr ¼ r0pt�ðR1�Rf Þfvþ tr�
tf

2

� �
ps

2
(19)

Correspondingly, the dynamic equations for the clamp band joint system subjected to axial vibration are given by

m€zþ
ks

2
z�kszr ¼

ks

2
zH

mr €zr�
ksr0

2
zþðkrþkpþksr0Þzr ¼�

ksr0

2
zH�ðR1�Rf 0Þfvþ tr�

tf

2

� �
ps

2

(20)

where kp and fv are expressed in Eqs. (15) and (18), respectively. It is noted that no damping force is incorporated in
Eq. (20). Actually, the joint system is subjected to not only the friction force but also other types of damping forces, such as
structural damping force and environmental damping force. Hence, the damping ratio x=0.05 is adopted here. Then the
equivalent damping of the dynamic system can be decided by

c¼ x
ffiffiffiffiffiffiffiffiffiffiffiffi
2ksm

p
cr ¼ 2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkrþkpþksr0Þmr

p (21)

By incorporating the equivalent damping into Eq. (20), the dynamic model for the clamp band joint system becomes

m€zþc _zþ
ks

2
z�kszr ¼

ks

2
zH

mr €zrþcr _zr�
ksr0

2
zþðkrþkpþksr0Þzr ¼�

ksr0

2
zH�ðR1�Rf 0Þfvþ tr�

tf

2

� �
ps

2

(22)

4. Experimental validation of the clamp band joint model

The effect of clamp band joint on the joint system is described by the axial motion equation for the flange of the
interface ring, where the relationship between the relative axial displacements at the joint surface and the preload as well
as the axial load is established. The inertial force in the motion equation is much small compared with the restoring force
and the excitation forces. Hence, when investigating the clamp band joint locally, the inertial force can be neglected and
the relative axial deformation at the joint surface can be obtained from Eq. (19)

ZR ¼ 2zr ¼
2r0pt�2ðR1�Rf Þfvþðtr�ðtf =2ÞÞps

krþkp
(23)

Therefore, static experiments can be adopted to assess the validity of the clamp band joint model.

4.1. Experimental set-up

A test specimen, which is a 1:2.5 scale model of the finite element model developed in Section 3.1, is constructed based
on the dimension theory. The configuration of the test specimen is similar to that of the clamp band joint illustrated in
Fig. 1 except that only one metal belt is employed to fasten the V-segments and is tightened by a single bolt at the ends.
Strain gauges are applied on the outer surface of the metal belt to measure the pretension in the metal belt and an
extensometer is mounted on the inner surfaces of the interface rings across the joint surface to measure the relative axial
displacement as shown in Fig. 9. The strain gauges and the extensometer are all calibrated in advance and mounted onto
the test specimen when the belt is slack with no pretension applied.

The test specimen is mounted on a universal testing machine that is used to apply axial tension and pressure as shown
in Fig. 10. Preload is applied to the metal belt through tightening the joint bolt. In order to achieve uniform belt tension the
loading process is very slow and the belt is tapped successively around the periphery after each increment of loading
until the anticipated preload is achieved. Then axial load is applied by the universal testing machine incrementally to the
test specimen and the values of the relative displacement at the joint surface are recorded by the extensometer



ARTICLE IN PRESS

Fig. 9. Configuration of the test specimen with the attachment of the extensometer.

Fig. 10. Experimental set-up. Test specimen under (a) tension load and (b) pressure load.
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correspondingly. It should be noted that the extensometer is reset before each cycle of the axial loading, which means that
for each loading cycle the measured value of the initial relative displacement is zero.
4.2. Experimental results

The static experiments are carried out under different levels of preload. The relationships between the axial forces and
the relative axial displacements under the preloads of 0.4 and 0.7 kN are shown in Fig. 11, where the maximum values
of the axial load applied to the test specimen are 9 and 15 kN, respectively. In Fig. 11 the solid lines represent the analytical
results that are obtained by substituting the structural parameter values of the test specimen and the values of the preload
and axial load into Eq. (23).

It can be seen in Fig. 11 that the curve slope values of the analytical results are a little larger than those of the
experimental results under the tension states, which means that the stiffness values of the analytical results are slightly
large compared with those of the measured results. This difference is probably caused by the variation of the pretension in
the metal belt during the axial loading process, which is assumed to be constant in the deduction of the dynamic model for
the clamp band joint system. When the tension load is applied to the clamp band joint, radial compression of the flanges
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Fig. 11. Relation curves of axial force and relative axial displacement. (a) Relation curve for preload of 0.4 kN and (b) relative curve for preload of 0.7 kN.
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takes place together with the torsional deformation, which will lead to the decrease of the pretension in the metal belt.
Consequently, the decrement of the pretension affects the axial stiffness of the clamp band joint. However, the variation of
the pretension is very small and its effect on the axial stiffness can be neglected. When the pressure load is applied to the
test specimen, unreasonable negative relative displacements at the joint surface are observed in the experimental data as
shown in Fig. 11. This phenomenon is due to the setup of the extensometer. The measured value of the extensometer is set
to be zero at the beginning of each loading cycle as it is mentioned above. Whereas, the preload applied in the metal belt
generates an initial gap between the upper and lower flanges before axial load acts. When the axial pressure load is applied
the upper and lower flanges get into full contact. During this process the measured value of the extensometer changes from
zero to a certain negative value that corresponds to the magnitude of the initial gap of the flanges. If the values of the initial
gap are subtracted from the experimental results, the experimental results show good agreement with analytical ones.

It can be seen from the comparison that the calculated results give good correlation with the experimental data, thus
the applicability of the clamp band joint model is validated.

5. Dynamic characteristics of clamp band joint system

5.1. Forced response of clamp band joint system subjected to axial excitation

The forced responses of the joint surface and the payload to a harmonic displacement excitation of amplitude ZH=1 mm
and different frequencies are shown in Fig. 12. It is revealed that the motions of the joint surface and the payload are often
multiharmonic in nature. At a relatively low excitation frequency fs=60 Hz, the motion has a second harmonic of the
excitation frequency as shown in Fig. 12(a). As the excitation frequency is increased, sub-harmonic responses are typical as
shown in Fig. 12(b) and (c), where 1

2 sub-harmonic response can be observed. As the excitation frequency increases to
500 Hz, apart from the payload resonance frequency, no obvious multiharmonic response is found. This kind of behavior is
common for nonlinear systems [14]. And as for the clamp band joint system, it is caused by the piecewise linear stiffness of
the joint interface. Another phenomenon that should be noted is that as the excitation frequency increases the balance
position of the payload moves upwards due to the opening of interface ring flanges.

In order to further investigate the effect of the clamp band joint on the dynamic characteristics of the jointed system,
the model shown in Fig. 4 is reconsidered by removing the clamp band joint and fixing the upper and lower interface rings
together. In this case there will be no relative displacement at the joint surface. Then the model is simplified to a linear
system of single degree of freedom with motion equation given by

m€zþc _zþ
ks

2
z¼

ks

2
zH (24)

Response amplitudes of the payload with and without clamp band joint for different excitation frequencies and a
constant amplitude of 9zH9=1 mm are shown in Fig. 13. Those two frequency–response curves illustrate the transfer
characteristics of the joint system and the corresponding linear system. It can be seen from Fig. 13 that the resonance
frequency of the linear system with the interface rings fixed together is 242 Hz. Whereas the primary resonance frequency
of the clamp band joint system displays a deviation away from that of the corresponding linear system and changes to be
130 Hz. The decrement of the resonance frequency results from the decrease of the system stiffness that is caused by the
presence of clamp band joint. Besides, there exist relatively large amplitudes of components near 66 and 254 Hz in the
frequency–response curve of the clamp band joint system. Jump phenomenon is also observed around frequencies of 412
and 463 Hz, which are illustrated by dashed lines in Fig. 13. The nonlinear characteristics observed in the responses of the
joint system are induced by the piecewise linear stiffness resulting from the clamp band joint, which brings the
asymmetric constraint of axial deformation and the frictional contact into the clamp band joint system.
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Fig. 12. Joint surface and payload responses for different excitation frequency. Response for excitation of (a) fs=60 Hz, (b) fs=120 Hz, (c) fs=300 Hz and

(d) fs=500 Hz.
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The jumping behavior can be clearly seen in time domain by frequency sweeping across the jump point. Taking the
jump around 463 Hz as an example, the time response of the payload is shown in Fig. 14. It can be seen in Fig. 14 that the
axial displacement of the payload in the first 0.2 s reaches the amplitude at the upper branch of the frequency–response
curve for the excitation frequency of 462.8 Hz. Then the response amplitude jumps to the lower branch after a transient
period as the excitation frequency is perturbed to 462.9 Hz. And when the excitation frequency returns to 462.8 Hz, the
response amplitude still stays at the lower branch.

5.2. The effect of wedge angle on response of clamp band joint system

The wedge angle a of the flanges is an important parameter for the clamp band joint. As for the clamp band used
to connect pipes, a is usually designed to be small enough to realize the self-lock between the interface ring and the
V-segment, which makes the connection more reliable. However, when used in the aerospace industry, separation of the
upper and lower interface rings should be concerned and no self-lock is allowed. Thus a must be chosen properly to meet
the requirements for both joint and separation.
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The maximum value of a that may lead to self-lock is 7.11 according to the baseline value of the friction coefficient m
listed in Table 1. Then the variation of a is set from 101 to 201. The variations of the frequency and amplitude of the payload
primary resonance response in terms of the wedge angle are shown in Fig. 15. From these curves it can be seen that the
resonance frequency of the payload decreases as the wedge angle is increased. In the meantime the resonance amplitude
increases. And as the wedge angle increases the change rates of frequency and amplitude become smaller. The increment
of the wedge angle weakens the constraint effect of the preload on the interface rings transferred through the wedging
action, which results in the decrease of the clamp band joint stiffness and consequently changes the resonance frequency
and amplitude of the payload.

It should be noted that the variation of the wedge angle is restricted in a small range for analyzing its effect on the
system response, since large variation of the structural parameters might lead to the invalidity of the assumptions and
approximations made in this paper. In that case, the dynamic equations derived here could not represent the dynamic
characteristics of the clamp band joint. For instance, considering the limit case of zero wedge angle, it is obvious that the
relative deformation between the flanges and the V-segments and the contact force distribution would be significantly
different from those under the baseline value of the wedge angle listed in Table 1. In this case the approximation for Rf and
rc made in Section 3.2 will lead to incorrect results and cannot be used any more.

5.3. The effect of preload on response of clamp band joint system

The effect of preload on the response amplitude of payload is also investigated. Fig. 16 shows the relationship between
the amplitude of the payload and the preload for different excitation frequencies. It can be seen from Fig. 16 that there is no
obvious change in the response amplitude as the magnitude of the preload is increased from 10 to 40 kN, which indicates
that the response amplitude is insensitive to the variation of the preload. This simulation result coincides with the analysis
result reported in Ref. [10], where it was verified that although the increase of the preload could improve the allowable
clamp design load, the variation of the preload in certain range had little effect on the joint stiffness when the applied axial
load was within the range of the allowable load.

6. Conclusions

The dynamic model of the clamp band joint system subjected to axial excitation has been developed on the basis of the
axial dynamic equation for the flange of the interface ring jointed by clamp band. In the model, the contact and frictional
slippage between the components were accommodated. Some model parameters that vary along with the axial
deformation of the joint system were determined by nonlinear finite element analysis. A 1:2.5 scale model of the clamp
band joint was constructed and static experiments were carried out to validate the clamp band joint model. The dynamic
model was then used to study the forced response of the clamp band joint system to axial excitation and the nonlinearity
caused by the clamp band joint. The effects of the wedge angle of the clamp band joint and the magnitude of the preload on
the responses were also discussed.

The calculated results based on the joint model showed good agreement with the experimental data, therefore the
validity of the presented joint model was verified. Simulations on the proposed dynamic model for the clamp band joint
system revealed that the clamp band joint reduced the system stiffness and brought nonlinearity to the system, where
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multiharmonic responses occurred in the responses of the joint surface and the payload to harmonic excitation. Jump
phenomenon of the payload response was also observed due to the discontinuity of the system stiffness. Parameter studies
indicated that an increase of the wedge angle led to the decrease of the resonance frequency and the increase of the
resonance amplitude of the payload. Besides, variation of the preload had no obvious effect on the system response as the
excitation stayed within the allowable clamp design load.
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